

# The Development of the Ducted Fan Noise Propagation and Radiation Code CDUCT-LaRC

Douglas M. Nark, F. Farassat D. Stuart Pope, Veer Vatsa

Presented at the 9th AIAA/CEAS Aeroacoustics Conference May 12-14, 2003 Hilton Head, South Carolina

#### Introduction



#### The Development of CDUCT-LaRC



Create a flexible and efficient environment in which to study propagation within and radiation from complex duct geometries

#### **Outline**



#### The Development of CDUCT-LaRC

- Grid Generation Module
- Background Flow Module
- Duct Propagation Module
  - Boeing CDUCT Code Utilizing Parabolic Approximation

```
(R.P. Dougherty, AIAA Paper 97-1652)
(J. H. Lan, NASA CR-2001-211245)
```

- Acoustic Radiation Module
  - FW-H Equation with a Penetrable Data Surface

(Brentner, Farassat, AIAA Journal, Vol. 36, No. 8)

- Preliminary Calculations
- Concluding Remarks

#### **Grid Generation Module: Mean Flow**



#### The Development of CDUCT-LaRC

#### Approach:

 Automatically generate a structured multi-block grid projected to NURBS (splined) surfaces created from user supplied surface geometry

#### Input:

- User specified as PLOT3D surfaces
  - Co-annular duct geometry
  - Pylon geometry (for aft radiation)
  - External nacelle surface geometry

#### Output:

 Structured multi-block grid in PLOT3D format suitable for mean flov calculations



# **Grid Generation Module: Propagation**



The Development of CDUCT-LaRC

#### Approach:

 Automatically generate a structured multi-block grid using NURBS volumes to facilitate redimensioning and redistribution

#### Input:

 Structured multi-block background flow grid in PLOT3D format

#### Output:

• Structured multi-block grid in PLOT3D format suitable for propagation calculations



# **Background Flow Module**



#### The Development of CDUCT-LaRC

#### Approach:

Steady compressible inviscid
 CFD computation

#### Input:

- Structured multi-block grid in PLOT3D format
- Flow Conditions

#### Output:

 Mean flow quantities in PLOT3D solution file format



# **Duct Propagation Module**



The Development of CDUCT-LaRC

#### Approach:

- Existing model of Boeing CDUCT code based on parabolic approximation with no reflections. Dougherty (1997) Lan(2001)
- Complex acoustic potential is calculated throughout each block.

#### Input:

- Mach number distribution from the mean flow calculations.
- Hardwall annular duct modes are specified in the inflow plane of the upstream block.
- Subsequent blocks are initialized using data from the exit surface of upstream blocks.



# **Duct Propagation Module**



The Development of CDUCT-LaRC

#### Output:

• Results may be output in the form of complex acoustic potential or pressure.

 Output of the complex acoustic potential is used in subsequent FW-H radiation calculations.

#### Current Activities :

- Hardwall annular duct modal input with the option to specify the energy in each mode at a fixed frequency.
- Specification of a pressure distribution (in a single plane) as input.



#### **Acoustic Radiation Module**



The Development of CDUCT-LaRC

#### Approach:

• Ffowcs Williams-Hawkings equation with a penetrable data surface

#### Flow Data Input:

- Specified on the exhaust surface:
  - •Mean flow quantities ( $\rho$ , **U**) from the background flow calculations
- •Acoustic quantities ( $\rho$ ',  $\rho$ ', u',  $\nabla \rho$ ',  $\nabla u$ ') from the complex acoustic potential obtained in the propagation calculations



#### **Acoustic Radiation Module**



The Development of CDUCT-LaRC

#### Observer Location Input:

- Basic observer distributions available:
  - Sphere centered on the duct axis
- Arc from the duct axis through x degrees
- User provided

#### Output:

Radiated acoustic pressure

#### **Current Activities:**

- Extension of the propagation calculations to a pseudo-duct extending beyond the exhaust or inlet plane
  - Account for presence of cowl surface
  - Account for refraction of sound through the shear layer



#### **Acoustic Radiation Module**



#### The Development of CDUCT-LaRC

#### Approach:

- Extend the propagation calculation (using the parabolic approximation) to the shear layer region external to the duct.
- Find the normal velocity and pressure on the external surface of the shear layer.
- Apply FW-H equation with penetrable data surface to calculate far field radiation.
- This method will give the radiation in forward arc from the duct exhaust.





The Development of CDUCT-LaRC

Three ducts have been initially tested:

- Duct 1: straight co-annular duct having inner and outer radii 0.285 m (11.23 in) and 0.412 m (16.22 in), respectively. The duct length is 1.07 m (42.88 in).
- Duct 2: similar to duct 1 except that infinitely thin pylons are placed in the top and bottom of the middle third of the duct.
- Duct 3: bypass duct of a small business jet with dimensions similar to duct 1. The pylon is modeled as a NACA 0015 airfoil.

Configurations similar to ducts 2 and 3 may include only a single pylon.



The Development of CDUCT-LaRC

Comparison of CDUCT-LaRC Propagation Calculation and Analytical Results along a line parallel to duct axis – Downstream Propagation Mode (10,1), M=0.4

r = 0.308 m (12.1 in)r = 0.377 m (14.8 in)Numerical Numerical 0.0004 r 0.0008 Analytic Analytic 0.0003 0.0006 Acoustic Potential (m²/s) Acoustic Potential (m²/s) 0.0002 0.0004 0.0001 0.0002 0.0000 0.0000 -0.0001 -0.0002 -0.0002 -0.0004 -0.0006 -0.0003 -0.0004 -0.0008 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 1.25 0.00 1.25 x (m) x (m)



The Development of CDUCT-LaRC

Comparison of CDUCT-LaRC Propagation Calculation and Analytical Results along a line parallel to duct axis – Upstream Propagation

Mode (10,1), M=0.4





The Development of CDUCT-LaRC

# Real Part of Acoustic Potential – Mode (10, 1) Inlet Mach Number 0.4, Frequency 5000 Hz



**Exhaust** 



The Development of CDUCT-LaRC

# Radiated Sound Pressure Level – Mode (10, 1) Inlet Mach Number 0.4, Frequency 5000 Hz

Sphere of radius 5 duct diameters centered on the duct axis in the exhaust plane





The Development of CDUCT-LaRC

# Comparison of CDUCT-LaRC (FW-H) and Rayleigh (Analytical) Radiation Calculations: Duct 1

(10, 1) Mode Cut-Off Ratio 3.59 (10, 4) Mode Cut-Off Ratio 1.26



# **Liner Specification**



#### The Development of CDUCT-LaRC



# **Concluding Remarks**



#### The Development of CDUCT-LaRC

- Validation is underway and will include:
  - Large range of frequencies and modes
  - Various engine inlet and exhaust geometries
  - Various liner configurations, axially and radially segmented
- Preliminary results indicate that the modules for duct propagation and radiation offer appropriate physical models for noise prediction
- A focused study of pylon geometry with liner may identify a new approach for engine noise control